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Abstract

The purpose of this paper is to discretize improper affine spheres and to investigate them in detail.
We clarify a link between discrete improper affine spheres and Hirota’s discrete Liouville equation,
and characterize those surfaces in terms of loop groups.
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1. Introduction

In recent years, there has been explosive progress in the theory of discrete integrable
systems. In this connection, discrete surfaces have been studied one after another with
strong ties to physics and great potential for computer analysis. Those relationship between
geometry and integrable systems can be diagrammed as below: the right arrows mean
integrability conditions, the left ones geometric correspondent, the up ones continuum
limit, and the down ones discretization. In general, one differential equation may have
many discrete models, so how can we find a good one among them? A possible strategy is
to discretize it via geometry. Such a link between discrete integrable systems and particular
classes of discrete surfaces has been established. For example, Hirota’s discrete sine-Gordon
equation arises as the discrete integrability condition for discrete pseudo-spherical surfaces
[1,7].
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Affine spheres are those surfaces for which the affine shape operator is a scalar multiple of the
indentity, but unlike the Euclidean case they are by no means simple or easy to determine
[6]. A discrete integrable analogue ofproper affine spheres was given by Bobenko and
Schief[2,3], who presented a natural geometric discretization of them and investigated the
corresponding discrete Gauss–Codazzi equations in detail. But, improper affine spheres
make also an abundant and important class including ruled surfaces. Furthermore, every
solution to the Liouville equation

(logω)uv + ω−2 = 0 (1)

describes an improper affine sphere inR
3. The solutionω of (1) becomes the volume

element of the affine metric. In this paper, we discretizeimproperaffine spheres. A discrete
integrable analogue of theEq. (1)was constructed by Hirota[5] without using any relation
to geometry. We show that Hirota’s discrete Liouville equation

2 sinh
W12 − W1 − W2 + W

2
+ exp

−W12 − W1 − W2 − W

2
= 0 (2)

describes our discrete improper affine spheres, and this observation permits the diagram
given on the previous page to commute. Moreover, inSection 6, we characterize improper
affine spheres with indefinite affine metric in terms of loop groups, and give a discrete
analogue of that characterization, which shows that our discrete improper affine spheres
also have rich algebraic structure.

2. Preliminary

In this section, let us recall basic notation of affine differential geometry. LetM be a
two-dimensional smooth manifold andD the usual flat affine connection onR3. For an
immersionf : M → (R3,D), we choose an arbitrary transversal vector fieldξ onM, that
is

Tf (x)R
3 = f∗(TxM) ⊕ Rξx

at each pointx ∈ M. The formulas of Gauss and Weingarten

DX(f∗Y ) = f∗(∇XY) + h(X, Y )ξ, DXξ = −f∗(SX) + τ(X)ξ
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induce onM an affine connection∇, a symmetric(0,2)-tensor fieldh, a (1,1)-tensor
field S and a 1-formτ . The determinant function ofR3 induces a volume formθ on M

via

θ(X, Y ) = det(f∗X, f∗Y, ξ).

The rank of the affine fundamental formh is independent of the choice of transversal
vector fieldξ . We assume that the rank is 2, so thath can be treated as a nondegenerate
metric onM. This is a basic assumption on which Blaschke developed affine differential
geometry of hypersurfaces. For each pointx ∈ M, there is a transversal fieldξ defined in
a neighbourhood ofx satisfying the conditions

ω = θ, ∇θ = 0. (3)

Hereω denotes the volume element of the nondegenerate metrich. The former is called
volume condition and the latter equiaffine condition. Since the determinant function is
parallel relative toD, the equation∇θ = τθ holds. Therefore, the equiaffine condition is
equivalent toτ = 0.

A transversal field satisfying(3) is called aBlaschke normal field, which is uniquely
determined up to sign locally. The immersionf : (M,∇) → (R3,D) with Blaschke
normal field is calledBlaschke immersionandh is calledaffine metric.

Lemma 2.1. The Laplacian of a Blaschke immersion,�f relative to the affine metric is
equal to2ξ .

Definition 2.2. A Blaschke immersionf is called animproperaffine sphere ifS is identi-
cally 0. If S = λI , whereλ is a nonzero constant, thenf is called aproperaffine sphere.

An affine sphere has the following characteristic property (cf.[6, p. 43]), which helps us
to discretize affine spheres.

Lemma 2.3. Letf : M → R
3 be a Blaschke immersion. Then(f,M) is an improper affine

sphere if and only if the Blaschke normals are parallel inR
3, and(f,M) is a proper affine

sphere if and only if the Blaschke normals meet at one point inR
3.

Since a discretization of surfaces essentially depends on a choice of a coordinate system,
we need consider separately the cases of which metric is indefinite or definite.

3. Discrete indefinite improper affine sphere

Assume now that a Blaschke immersionf is an improper affine sphere and the affine
metrich is indefinite. We shall also sayf an indefinite improper affine sphere. We choose
an asymptotic coordinate system(D, (u, v)) with respect toh so thath = 2ω dudv. By
the volume condition, we have thatω(u, v) = det(fu, fv, ξ). Applying if necessary a
transformation(u, v) 	→ (v,−u), we can always achieveω > 0.
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Proposition 3.1. Letf : D ⊂ M → R
3 be an indefinite improper affine sphere. Then the

Gauss equations are as follows:

fuu = ωu

ω
fu + a

ω
fv, (4)

fuv = ωξ, (5)

fvv = b

ω
fu + ωv

ω
fv, (6)

whereξ is a nonzero constant vector inR3, and three functionsa, b and ω satisfy the
Gauss–Codazzi equations

(logω)uv + abω−2 = 0, av = 0, bu = 0. (7)

Proof. We choose asymptotic coordinate system(D, (u, v)) and obtain

fuv =
∣∣∣∣h
(

∂

∂u
,
∂

∂v

)∣∣∣∣ ξ = ωξ

by Lemma 2.1. �

Sincea is a function only inu, we obtaina du3 = dũ3, whereũ = ∫
a1/3du. Namely,

we can takea = 1 = b without a loss of generality in the case thatab �= 0. Then, the
compatibility condition(7) is reduced to the Liouville equation

wuv + e−2w = 0, (8)

whereω = ew. Consider the relations

(w̃ − w)u = −β e−w̃−w, (w̃ + w)v = 1

β
ew̃−w, (9)

whereβ ∈ R is a nonzero constant which is known as a Bäcklund parameter. The integra-
bility condition of(9)producesw̃uv = 0. Thus, the implicit relations(9)give a link between
the nonlinear equation and the linear equation. This connection may be exploited to solve the
Liouville equation in full generality. Inserting the general solutionw̃(u, v) = p(u)+ q(v)

into the Bäcklund relations(9), and subsequent integration produces a general solution of
the Liouville equation in the form

f (u, v)= ξ

∫ u

u0

∫ v

v0

(
β

∫ s

s0

e−2p(σ)dσ + 1

β

∫ t

t0

e2q(σ )dσ + α

)

× ep(s)−q(t) dt ds + η(u) + ζ(v),

whereα ∈ R is a constant andη(u), ζ(v) are vectors inR3.
In the case thatab = 0, we easily obtain

f (u, v) = ξ

∫ u

u0

ep(σ) dσ
∫ v

v0

eq(σ ) dσ + η(u) + ζ(v).

The following proposition is well known (cf.[6, pp. 92, 116]).
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Proposition 3.2. If f is a ruled improper affine sphere, then it is locally of the formz =
xy+ ϕ(x), whereϕ is an arbitrary function ofx. Conversely, the graph ofz = xy+ ϕ(x)

is a ruled improper affine sphere.

Now we discretize improper affine spheres in a purely geometric manner. For a map
F : Z

2 → R
3, we denote increments of the discrete variables by subscripts, namely,

F = F(n,m), F1 = F(n + 1,m), F2 = F(n,m + 1),

F12 = F(n + 1,m + 1).

Moreover, decrements are indicated by subscripts with overbars, that is

F1̄ = F(n − 1,m), F2̄ = F(n,m − 1).

Taking the Gaussequations (4)–(6)into account, we give the following definition. Dis-
cretizing surfaces is nothing less than discretizing the coordinate system.

Definition 3.3. A map F : Z
2 → R

3 is called adiscrete indefinite improper affine
sphereif it has the following properties: every five pointsF = F(n,m) and its neigh-
boursF1, F2, F1̄, F2̄ lie on one plane. The vectorsF12 + F − F1 − F2 are all parallel in
R

3.

Proposition 3.4. LetF : Z
2 → R

3 be a discrete indefinite improper affine sphere. Then
the discrete Gauss equations are as follows:

(F1 − F) − (F − F1̄) = Ω − Ω1̄

Ω
(F1 − F) + A

Ω
(F2 − F), (10)

F12 + F − F1 − F2 = Ω Ξ, (11)

(F2 − F) − (F − F2̄) = B

Ω
(F1 − F) + Ω − Ω2̄

Ω
(F2 − F), (12)

whereΞ is a nonzero constant vector inR3 and three functionsA,B andΩ satisfy the
discrete Gauss–Codazzi equations

Ω12Ω − Ω1Ω2 + A1B2 = 0, A2 − A = 0, B1 − B = 0. (13)

Moreover, these Eqs.(10)–(13)become continuous ones(4)–(7) in the continuum limit

F = f, Ω = ωε1ε2, A = aε3
1, B = bε3

2, (14)

where smooth variables are correlated to discrete ones as(u, v) = (ε1n, ε2m) for small
positive numbersε1 andε2.

Proof. SinceF is a discrete indefinite improper affine sphere, there exist functions onZ
2

such that

F11 − F1 = P(F1 − F) + Q(F12 − F1), F12 + F − F1 − F2 = ΩΞ,

F22 − F2 = R(F2 − F) + S(F12 − F2),
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whereΞ is a nonzero constant vector inR
3. The compatibility condition ofF is equivalent

to the system

0 = P2 + Q2S − P, 0 = Q2R − Q,

0 = P2Ω + Q2SΩ + Q2Ω2 − QΩ − Ω1, 0 = S1P − S,

0 = R1 + S1Q − R, 0 = R1Ω + S1QΩ + S1Ω1 − SΩ − Ω2.

The aimedequations (13)are obtained by settingA1 = QΩ andB2 = SΩ.
Next, we regard a discrete mapF as an approximation of a smooth mapf , that is

F(n,m) = f (ε1n, ε2m)

for smallε1, ε2, then, the Taylor expansions

F1 − F = ε1fu + ε2
1

2
fuu + O(ε3

1), F2 − F = ε2fv + ε2
2

2
fvv + O(ε3

2)

apply. Thus, the discrete Gauss and Gauss–Codazziequations (10)–(13)produce continuous
ones(4)–(7)in the continuum limitε1, ε2 → 0. �

In the case thatAB �= 0, the first equation of the systems(13) is locally written down as

2 sinh
W12 − W1 − W2 + W

2
+ A1B2 exp

−W12 − W1 − W2 − W

2
= 0, (15)

whereΩ = ±expW .

Remark 3.5. Eq. (15)is exactly Hirota’s discrete Liouvilleequation (2)whenAB = 1. He
constructed a discrete integrable analogue to the Liouvilleequation (8)without using any
relation to geometry, and it has been revealed that his method to discretize nonlinear partial
differential equations produces good difference ones in the view of discrete integrability.
Thus, our discrete indefinite improper affine spheres are described in terms of discrete
integrable systems.

Remark 3.6. Hirota proposed a Bäcklund transformation for the discrete Liouvilleequa-
tion (2)as follows:

sinh
W̃1 − W̃ − W1 + W

2
+ β exp

−W̃1 − W̃ − W1 − W

2
= 0, (16)

sinh
W̃2 − W̃ + W2 − W

2
+ 1

4β
exp

W̃2 + W̃ − W2 − W

2
= 0, (17)

whereβ is a nonzero parameter and̃W is a solution to the discrete wave equation

W̃12 − W̃1 − W̃2 + W̃ = 0.

One can directly verify that ifW is a solution to the systems(16) and (17), thenW satisfies
the discrete Liouvilleequation (2).
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In the case thatAB = 0, we obtain the following theorem, which is a discrete analogue
of Proposition 3.2.

Theorem 3.7. LetF : Z
2 → R

3 be a ruled discrete indefinite improper affine sphere, that
is the pointsF(n,m0) lie on a line for any fixed integerm0. Then it is locally of the form

(n,m) 	→ t (n,m,nm+ Φ(n)),

whereΦ is an arbitrary sequence ofn. Moreover it becomes the continuous graphz =
xy+ ϕ(x) by taking an appropriate continuum limit.

Proof. We show that the difference systems(10)–(13)provide the theorem. From the Gauss
equation (11), the vectorF(n,m) is of the form

F(n,m) =




∑n−1
i=0

∑m−1
j=0 Ω(i, j)Ξ + F(n,0) + F(0,m) − F(0,0), n,m > 0,

−∑−1
i=n

∑m−1
j=0 Ω(i, j)Ξ + F(n,0) + F(0,m) − F(0,0), n < 0,m > 0,

F (n,m), nm= 0,∑−1
i=n

∑−1
j=m Ω(i, j)Ξ + F(n,0) + F(0,m) − F(0,0), n,m < 0,

−∑n−1
i=0

∑−1
j=m Ω(i, j)Ξ + F(n,0) + F(0,m) − F(0,0), n > 0,m < 0.

If AB �= 0, a discrete indefinite improper affine sphereF cannot be ruled. Hence we can
assumeB = 0 without a loss of generality. The functionΩ(n,m) is of the form

Ω(0,0)Ω(n,m) = P(n)Q(m),

whereP(n) = Ω(n,0) andQ(m) = Ω(0,m) are arbitrary one variable functions.
We can assume that the initial valueΩ(0,0) is equal to 1, and we set formally the

summation
∑k1

k=k2
to be always zero fork1 < k2. From the discrete Gaussequations (10)

and (12), we have

F(0,m) =
{∑m−1

j=0 Q(j)(F (0,1) − F(0,0)) + F(0,0), m > 0,

−∑−1
j=m Q(j)(F (0,1) − F(0,0)) + F(0,0), m ≤ 0,

and

F(n,0) =




∑n−1
l=0 P(l)(F (1,0) − F(0,0)) +∑n−1

l=0 P(l)

×∑l−1
k=0

(
A(k + 1)

P (k)P (k + 1)

)
(F (0,1) − F(0,0)) +∑n−1

l=0 P(l)

×∑l−1
k=0

(
A(k + 1)

P (k)P (k + 1)

)∑k
i=0P(i)Ξ + F(0,0), n > 0,

−∑−1
l=n P (l) (F (1,0) − F(0,0)) +∑−1

l=n P (l)

×∑−1
k=l

(
A(k + 1)

P (k)P (k + 1)

)
(F (0,1) − F(0,0)) −∑−1

l=n P (l)

×∑−1
k=l

(
A(k + 1)

P (k)P (k + 1)

)∑−1
i=k+1P(i)Ξ + F(0,0), n ≤ 0.
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Then we obtain the following expressions: in the case thatn ≥ 0 andm ≥ 0,

F(n,m)=
n−1∑
i=0

P(i)(F (1,0) − F(0,0))

+

m−1∑

j=0

Q(j) +
n−1∑
i=0

P(i)

i−1∑
k=0

A(k + 1)

P (k + 1)P (k)


 (F (0,1) − F(0,0))

+

n−1∑

i=0

P(i)

m−1∑
j=0

Q(j)+
n−1∑
i=0

P(i)

i−1∑
k=0

A(k+1)

P (k+1)P (k)

k∑
l=0

P(l)


Ξ+F(0,0).

In the case thatn ≤ 0 andm ≥ 0,

F(n,m)= −
−1∑
i=n

P (i)(F (1,0) − F(0,0))

+

m−1∑

j=0

Q(j) +
−1∑
i=n

P (i)

−1∑
k=i

A(k + 1)

P (k + 1)P (k)


 (F (0,1) − F(0,0))

−

 −1∑

i=n

P (i)

m−1∑
j=0

Q(j)+
−1∑
i=n

P (i)

−1∑
k=i

A(k+1)

P (k+1)P (k)

−1∑
l=k+1

P(l)


Ξ+F(0,0).

In the case thatn ≤ 0 andm ≤ 0,

F(n,m)= −
−1∑
i=n

P (i)(F (1,0) − F(0,0))

−

 −1∑

j=m

Q(j) −
−1∑
i=n

P (i)

−1∑
k=i

A(k + 1)

P (k + 1)P (k)


 (F (0,1) − F(0,0))

+

 −1∑

i=n

P (i)

−1∑
j=m

Q(j)−
−1∑
i=n

P (i)

−1∑
k=i

A(k+1)

P (k+1)P (k)

−1∑
l=k+1

P(l)


Ξ+F(0,0).
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In the case thatn ≥ 0 andm ≤ 0,

F(n,m)=
n−1∑
i=0

P(i)(F (1,0) − F(0,0))

−

 −1∑

j=m

Q(j) −
n−1∑
i=0

P(i)

i−1∑
k=0

A(k + 1)

P (k + 1)P (k)


 (F (0,1) − F(0,0))

−

n−1∑

i=0

P(i)

−1∑
j=m

Q(j)−
n−1∑
i=0

P(i)

i−1∑
k=0

A(k+1)

P (k+1)P (k)

k∑
l=0

P(l)


Ξ + F(0,0).

Thus a ruled discrete indefinite improper affine sphere is locally the graph(n,m) 	→
t (n,m,nm+ Φ(n)), whereΦ is an arbitrary sequence ofn.

Moreover, by regarding the functionsP,Q andA as approximations of smooth functions
p, q anda, respectively, via

P(n) = exp

(
p

(
u0 + n

u − u0

k − 1

))
u − u0

k − 1
,

Q(m) = exp

(
q

(
v0 + m

v − v0

k − 1

))
v − v0

k − 1
,

A(n) = a

(
u0 + n

u − u0

k − 1

)(
u − u0

k − 1

)3

,

we obtain

lim
k→∞

k−1∑
n=0

P(n) =
∫ u

u0

ep(σ) dσ, lim
k→∞

k−1∑
n=0

Q(m) =
∫ v

v0

eq(σ ) dσ,

and

lim
k→∞

k−1∑
n=0

A(n + 1)

P (n + 1)P (n)
=
∫ u

u0

dσ.

Thus,F becomes the smooth graphz = xy+ ϕ(x) ask tends to infinity. �

4. Discrete definite improper affine sphere

Assume now that a Blaschke immersionf is an improper affine sphere and the affine
metrich is definite. We shall also briefly sayf a definite improper affine sphere. We choose
an isothermal coordinate system(D, (u, v)) with respect toh and setz = x + iy, so that
h = 2ω dz dz̄. By the volume condition, we have thatω = −i det(fz, fz̄, ξ).
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Proposition 4.1. Let f : D ⊂ M → R
3 be a definite improper affine sphere. Then the

Gauss equations are as follows:

fzz = ωz

ω
fz − a

ω
fz̄, (18)

fzz̄ = −ωξ, (19)

fz̄z̄ = − ā

ω
fz + ωz̄

ω
fz̄, (20)

whereξ is a nonzero constant vector inR3 and functionsω anda satisfy the Gauss–Codazzi
equations

(logω)zz̄ + |a|2ω−2 = 0, az̄ = 0.

Taking the Gaussequations (18)–(20)into account, we give the following definition.

Definition 4.2. A mapF : Z
2 → R

3 is called adiscrete definite improper affine sphere
if it has the following properties: each quadrilateralF,F1, F12, F2 is planar and the vector
F1 + F1̄ − F2 − F2̄ is tangential. The vectorsF1 + F1̄ + F2 + F2̄ − 4F are all parallel in
R

3.

Then we obtain the following theorem.

Theorem 4.3. Let F : Z
2 → R

3 be a discrete definite improper affine sphere. Then the
discrete Gauss equations are as follows:

(F1 − F) − (F − F1̄) = A(F1 − F) + B(F2 − F) − ΩΞ,

F12 + F − F1 − F2 = P(F1 − F) + Q(F2 − F),

(F2 − F) − (F − F2̄) = −A(F1 − F) − B(F2 − F) − ΩΞ,

whereΞ is a nonzero constant vector inR3 and five functionsA,B, P,Q andΩ on Z
2

satisfy the discrete Gauss–Codazzi equations

Ω
P + 1

A − 1
= Ω2

2B2 + 1

A2 − B2 − 1
, (21)

Ω
Q + 1

B + 1
= Ω1

2A1 − 1

A1 − B1 − 1
, (22)

P + 1

Q + 1
= A12 − 1

2A12 − 1

2B12 + 1

B12 + 1
. (23)

Proof. SinceF is a discrete definite improper affine sphere, there exist five functions
A,B, P,Q andΩ onZ

2 such that

F12 + F − F1 − F2 = P(F1 − F) + Q(F2 − F),

F1 + F1̄ − F2 − F2̄ = 2A(F1 − F) + 2B(F2 − F),

F1 + F1̄ + F2 + F2̄ − 4F = −2ΩΞ,
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whereΞ is a nonzero constant vector inR3. The discrete Gauss–Codazzi equations are:


P1 + 1

B12 + 1
A12

− Ω12

B12 + 1
A12Q1 − 1

B12 + 1




=




−A1 + 1
A1 − 1

Q + 1
P 0

−Ω1
Ω1

Q + 1
P 1

−B1
B1P + 1

Q + 1
0




×




−P2(P + 1) + (Q2 + 1)
P + 1

B2 + 1
A2

−P2Q + (Q2 + 1)
A2Q − 1

B2 + 1

−(Q2 + 1)
Ω2

B2 + 1



,




Q2 + 1

A12 − 1
B12

Ω12

A12 − 1
B12P2 + 1

A12 − 1




=




B2 + 1 −B2 + 1

P + 1
Q 0

−Ω2
Ω2

P + 1
Q 1

A2 −A2Q − 1

P + 1
0




×




−(Q + 1)Q1 + (P1 + 1)
Q + 1

A1 − 1
B1

−PQ1 + (P1 + 1)
B1P + 1

A1 − 1

(P1 + 1)
Ω1

A1 − 1



.

DeletingP1 + 1 andQ2 + 1 from the systems above, we obtain the first twoequations (21)
and (22). DeletingP2 andQ1, we obtain that

Q + 1

A1 − 1

(
P + 1

B2 + 1

)
1

=
(
Q + 1

A1 − 1

)
2

P + 1

B2 + 1
.

The combination of this equation with the systems(21) and (22)yields the lastequa-
tion (23). �

5. Examples

We illustrate examples of discrete improper affine spheres.

Example 5.1 (Discrete hyperbolic paraboloid). The graphz = (x2 − y2)/2 is calledhy-
perbolic paraboloid. The Gauss equations arefxx = ξ, fxy = 0, fyy = −ξ , whereξ =
t (0,0,1). Hence a hyperbolic paraboloid (Fig. 1) is an indefinite improper affine sphere. We



N. Matsuura, H. Urakawa / Journal of Geometry and Physics 45 (2003) 164–183 175

Fig. 1. Hyperbolic paraboloid.

choose an asymptotic coordinate system(u, v) and obtainf (u, v) = t (u+ v, u− v,2uv),
where the Gauss equations are:

fuu = 0, fuv = 2ξ, fvv = 0.

We call the map

F(n,m) = t (n + m, n − m,2nm)

discrete hyperbolic paraboloid(Fig. 2). The discrete Gauss equations are:

(F1 − F) − (F − F1̄) = 0, F12 + F − F1 − F2 = 2ξ,

(F2 − F) − (F − F2̄) = 0.

This is one of the simplest examples of discrete indefinite improper affine spheres.

Example 5.2 (Discrete Cayley surface). The graphz = xy−x3/3 is calledCayley surface.
There is a simple characterization of the Cayley surface, namely, if the cubic formC = ∇h

Fig. 2. Discrete hyperbolic paraboloid.
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Fig. 3. Cayley surface.

is not 0 and parallel relative to∇, a Blaschke immersion is affinely congruent to the Cayley
surface (Fig. 3). We call the map

F(n,m) = t

(
n,

n2 − m2

2
,
n3 − 3nm2

6

)

discrete Cayley surface(Fig. 4). This is a ruled discrete indefinite improper affine sphere.

Example 5.3. The graphz = xy+ cosx (Fig. 5), which is also a ruled improper affine
sphere, has a discrete analogue as

Fθ(n,m)= t

(
n, tan

θ

2
sin(θn), n tan

θ

2
sin(θn) + cos(θn)

)

− tan
θ

2
sin(θm)t (0,1, n),

whereθ is an arbitrary constant such that tan(θ/2) �= 0. This is a ruled discrete indefinite
improper affine sphere (Fig. 6).

Fig. 4. Discrete Cayley surface.
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Fig. 5. The graphz = xy+ cosx.

Fig. 6. Discrete surfaceFθ (n,m).

Example 5.4 (Discrete elliptic paraboloid). The graphz = (x2 + y2)/2 is calledelliptic
paraboloid(Fig. 7). It is a definite improper affine sphere. The map

F(n,m) = t

(
n,m,

(n2 + m2)

2

)

is calleddiscrete elliptic paraboloid(Fig. 8.)

Fig. 7. Elliptic paraboloid.
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Fig. 8. Discrete elliptic paraboloid.

6. Loop group description

It is known that proper affine spheres can be described in terms of loop groups[3,4]. In
this section, we show that improper affine spheres also allow such descriptions, and that a
natural discretization of this description leads to the same definition of discrete improper
affine spheres given inSection 3. Theorems 6.1 and 6.2provide many smooth and discrete
indefinite improper affine spheres systematically.

The Gaussequations (4)–(6)admit one parameter family of solutions, since the trans-
formationa 	→ µa andb 	→ µ−1b with an arbitrary nonzero constantµ ∈ R∗ leave the
Gauss–Codazziequation (7)unchanged. Thus, we obtain moving frame equations where
the coefficient matrices also depend on the additional real parameterµ. To make these
coefficient matrices simple, we gauge the moving frame and replaceµ by λ = 3

√
µ. We set

ϕ(u, v, λ) = (fu, fv, ξ)




1

λ
√
ω

0 0

0
λ√
ω

0

0 0 1




and obtain

ϕ(u, v, λ)−1ϕ(u, v, λ)u = ωu

2ω




1 0 0

0 −1 0

0 0 0


+ λ




0 0 0
a

ω
0 0

0
√
ω 0


 , (24)

ϕ(u, v, λ)−1ϕ(u, v, λ)v = ωv

2ω




−1 0 0

0 1 0

0 0 0


+ λ−1




0
b

ω
0

0 0 0√
ω 0 0


 . (25)

This mapϕ : D × C∗ → SL (3,C) is called themodified frameof the indefinite improper
affine spheref . It turns out that a solutionϕ to the system above satisfies the relations

ϕ(u, v, λ̄) = ϕ(u, v, λ),

ϕ(u, v, qλ) = Qϕ(u, v, λ)Q−1, tϕ(u, v,−λ)T = T ϕ(u, v, λ)−1,
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where

T =




0 1 0

1 0 0

0 0 0


 , Q =



q 0 0

0 q2 0

0 0 1


 , q = e2π i/3.

Then we consider the mapϕ : D × C∗ → SL (3,C) asϕ : D → {γ : C∗ → SL (3,C)},
and introduce the group

G[λ] = {γ : S1 → SL (3,C)|γ (λ̄) = γ (λ), γ (qλ) = Qγ (λ)Q−1,

t γ (−λ)T = T γ (λ)−1}.
The second reduction should be understood in terms of a Fourier series expansionγ (λ) =∑

k∈Z λkγk with coefficients of the form

γ3n =




∗ 0 0

0 ∗ 0

0 0 ∗


 , γ3n+1 =




0 0 ∗
∗ 0 0

0 ∗ 0


 , γ3n+2 =




0 ∗ 0

0 0 ∗
∗ 0 0


 . (26)

The Lie algebra of this group is

g[λ] = {ξ : S1 → sl(3,C)|ξ(λ̄) = ξ(λ), ξ(qλ) = Qξ(λ)Q−1, t ξ(−λ)T = −T ξ(λ)}.
It is easily checked thatϕ−1ϕu andϕ−1ϕv are ing[λ], which implies thatϕ is in G[λ] for
all (u, v) ∈ D. The following natural subgroups ofG[λ] are essential for the construction
of discrete affine spheres.

G0 = G+[λ] ∩ G−[λ] =





α 0 0

0 α−1 0

0 0 1


 ∈ SL(3,C)

∣∣∣∣∣∣∣α ∈ C∗


 ,

whereG+[λ] = {γ ∈ G[λ]|γ (λ) = ∑
k≥0 λ

kγk} andG−[λ] = {γ ∈ G[λ]|γ (λ) =∑
k≤0 λ

kγk}.
Then we obtain the following theorem which provides us a loop group description of

indefinite improper affine spheres.

Theorem 6.1. LetD be a domain inR2, andU andV : D → g[λ], two smooth maps of the
form

U(λ) =
1∑

k=0

λkU(k), V(λ) =
1∑

k=0

λ−kV(k),

with their coefficient functionsU(1)32 andV(1)31 are positive onD. Assume, moreover, for all
loop parametersλ ∈ S1,

[U(λ),V(λ)] − U(λ)v + V(λ)u = 0.
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We define a mapϕ : D → G[λ] via the differential system

ϕ(λ)−1ϕ(λ)u = U(λ), ϕ(λ)−1ϕ(λ)v = V(λ).
Then, there exists uniquely a matrixC ∈ G0 such thatϕC : D → G[λ] is a modified frame
of indefinite improper affine spheres.

Proof. We construct a modified frameψ(λ) which solves the system(24) and (25)for
some three functionsa, b andω : D → R satisfying Gauss–Codazziequations (7). The
mapψ = ϕC satisfies

ψ(λ)−1ψ(λ)u = C−1U(0)C+ C−1Cu + λC−1U(1)C = Û(0) + λÛ
(1) = Û(λ).

We define a 3× 3 diagonal matrixC = diag[α,1/α,1], whereα =
√
U(1)32 /V

(1)
31 , and we

obtainÛ
(1)
32 = V̂(1)31 . We set

√
ω = Û(1)32 , a = Û(1)21ω, b = V̂(1)12ω.

SinceU andV areg[λ] valued function onD, we obtain

Û
(0) = α0




1 0 0

0 −1 0

0 0 0


 , Û

(1) =




0 0 0
a

ω
0 0

0
√
ω 0


 ,

V̂
(0) = β0




−1 0 0

0 1 0

0 0 0


 , V̂

(1) =




0
b

ω
0

0 0 0√
ω 0 0


 .

Finally, the compatibility condition

[U(λ),V(λ)] − U(λ)v + V(λ)u = 0

is equivalent to the systems

[Û
(1)
, V̂

(0)
] − Û(1)v = 0, [Û

(0)
, V̂

(1)
] − V̂(1)u = 0,

[Û
(0)

, V̂
(0)

] + [Û
(1)
, V̂

(1)
] − Û(0)v + V̂(0)u = 0,

which yield following equations:

α0 = ωu

2ω
, β0 = ωv

2ω
, av = 0, bu = 0, (logω)uv + abω−2 = 0.

Therefore,ψ describes a modified frame of indefinite improper affine spheres. �

A natural integrable discretization of the system is obtained as follows. The discrete Gauss
equations admit a one parameter family of solutions, since the transformationA 	→ µA and
B 	→ µ−1B with an arbitrary nonzero constantµ ∈ R leave the discrete Gauss–Codazzi
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equations unchanged. Thus we obtain moving frame equations, where the coefficient ma-
trices also depend on the additional nonzero real parameterµ. We set

Φ(n,m, λ) = (F1 − F,F2 − F,Ξ)




1

λ
0 0

0
λ

Ω
0

0 0 1


 , λ = 3

√
µ

and assumeΩ = det(F1 −F,F2 −F,Ξ), so that we obtain a mapΦ : Z
2 → G[λ], which

satisfies

Φ(λ)−1Φ(λ)1 =




Ω1

Ω
0 0

λA1
Ω

Ω1
0

λ2A1
λΩ

Ω1
1



,

Φ(λ)−1Φ(λ)2 =




1
λ−1B2

ΩΩ2
0

0 1 0

λ−1Ω
λ−2B2

Ω2
1



.

Then we obtain the following theorem which gives a discrete analogue ofTheorem 6.1.

Theorem 6.2. LetU andV : Z
2 → G[λ] be two maps of the form

U(λ) =
2∑

k=0

λkU(k), V (λ) =
2∑

k=0

λ−kV (k)

with their coefficients satisfyingU(1)
21 U

(1)
32 V

(1)
12 V

(1)
31 �= 0. Assume that the inverse matrix

U(λ)−1 contains onlyλ0 and λ1 and thatV (λ)−1 contains onlyλ0 and λ−1. Assume
moreover that the equation

U(λ)V (λ)1 − V (λ)U(λ)2 = 0

holds for all loop parametersλ ∈ S1. LetΦ : Z
2 → G[λ] be a map which satisfies

Φ(λ)−1Φ(λ)1 = U(λ), Φ(λ)−1Φ(λ)2 = V (λ).

Then, there exists uniquelyC ∈ G0 such that the mapΦC : Z
2 → G[λ] describes a

modified frame of discrete indefinite improper affine spheres.
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Proof. We defineG0 � C = diag[α,1/α,1], whereα =
√
U

(2)
31 /U

(1)
21 , and

Ω = U
(2)
31 V

(2)
32

U
(1)
21 V

(1)
12

, A1 = U
(2)
31 (U

(2)
31 )1

(U
(1)
21 )1

, B2 = V
(2)
32 (V

(2)
32 )2

(V
(1)
12 )2

,

which yield that the mapΦC gives a modified frame of discrete indefinite improper affine
spheres. �

Remark 6.3. In general, quadratic elementsU(λ) = ∑2
k=0 λ

kU(k), V (λ) = ∑2
k=0 λ

−kV (k) ∈
G[λ] are of the form

U(λ) =




U
(0)
11 0 0

λU
(1)
21

1

U
(0)
11

0

λ2U
(2)
31 λU

(1)
32 1



, V (λ) =




V
(0)
11 λ−1V

(1)
12 0

0
1

V
(0)
11

0

λ−1V
(1)
31 λ−2V

(2)
32 1



,

and their inverses are:

U(λ)−1 =




1

U
(0)
11

0 0

−λU
(1)
21 U

(0)
11 0

λ2

(
U

(1)
21 U

(1)
32 − U

(2)
31

U
(0)
11

)
−λU

(1)
32 U

(0)
11 1



,

V (λ)−1 =




1

V
(0)
11

−λ−1V
(1)
12 0

0 V
(0)
11 0

−λ−1V
(1)
31

V
(0)
11

λ−2(V
(1)
12 V

(1)
31 − V

(0)
11 V

(2)
32 ) 1



.

Therefore, the assumption on the degree of inverse matricesU(λ)−1, V (λ)−1 in Theorem 6.2
is equivalent to the following equations:

U
(1)
21 U

(1)
32 − U

(2)
31

U
(0)
11

= 0, V
(1)
12 V

(1)
31 − V

(0)
11 V

(2)
32 = 0.
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